Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 334: 122036, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553234

RESUMO

Nanocellulose, owing to its environmentally friendly and unique attributes, is gaining traction in various industries. However, commercialization of nanocellulose faces challenges due to structural alterations during drying process, leading to irreversible aggregation. This study, inspired by wood's natural structure, introduces a cellulose nanofibril (CNF) drying system using hemicellulose hydrolysate (HH) as a capping agent. The addition of only 1 wt% of HH to the CNF suspension not only prevents aggregation among CNFs during dehydration and drying but also dramatically enhances the redispersion rate and dispersion stability of the dried CNFs. The redispersed CNF/HH suspension exhibits physicochemical properties comparable to the original CNF suspension before drying. This confirms that HH inhibits irreversible hydrogen bonding among CNFs, leading to the restoration of the nanostructure during redispersion. Moreover, HH in the CNF suspension after redispersion can be easily removed through a simple water rinsing process, highlighting HH as a highly suitable candidate for preventing aggregation of CNFs.

2.
Int J Biol Macromol ; 257(Pt 2): 128810, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101680

RESUMO

In this study, a lignin-based hydrogel for wastewater treatment was prepared by incorporating kraft lignin (KL) into a poly (vinyl alcohol) (PVA) matrix. The underwater structural stability of the KL-PVA hydrogel was guaranteed through physicochemical crosslinking, involving freeze-thaw process and chemical crosslinking reaction. The KL-PVA hydrogel displayed superior compressive characteristics compared to the original PVA hydrogel. This improvement was attributed to the chemical crosslinking and the reinforcing effect of the incorporated KL microparticles. The incorporation of anionic KL microparticles into the PVA three-dimensional network structure enhanced the cationic methylene blue (MB) and crystal violet (CV) adsorption efficiency of the prepared KL-PVA hydrogel. The MB adsorption results were well explained by pseudo-2nd order kinetics model and Langmuir isotherm model. Electrostatic forces, hydrogen bonding and π-π stacking interactions were the main adsorption mechanisms between cationic dyes and KL surfaces, indicating the potential of KL-PVA hydrogel as an effective adsorption material. Moreover, regulating the molecular weight of PVA not only prevented lignin leakage from the KL-PVA hydrogel but also elevated the KL content within the hydrogel, consequently improving its dye removal performance. For KL-PVA hydrogel with high molecular weight PVA, the MB and CV adsorption capacities were 193.8 mg/g and 190.0 mg/g, respectively.


Assuntos
Hidrogéis , Poluentes Químicos da Água , Hidrogéis/química , Lignina/química , Corantes/química , Concentração de Íons de Hidrogênio , Cloreto de Polivinila , Adsorção , Cinética , Azul de Metileno/química , Cátions , Poluentes Químicos da Água/química
3.
Carbohydr Polym ; 317: 121090, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37364959

RESUMO

In this study, a pH-sensitive smart hydrogel was successfully prepared by combining a polyelectrolyte complex using biopolymeric nanofibrils. By adding a green citric acid cross-linking agent to the formed chitin and cellulose-derived nanofibrillar polyelectrolytic complex, a hydrogel with excellent structural stability could be prepared even in a water environment, and all processes were conducted in an aqueous system. The prepared biopolymeric nanofibrillar hydrogel not only enables rapid conversion of swelling degree and surface charge according to pH but can also effectively remove ionic contaminants. The ionic dye removal capacity was 372.0 mg/g for anionic AO and 140.5 mg/g for cationic MB. The surface charge conversion ability according to pH could be easily applied to the desorption of the removed contaminants, and as a result, it showed an excellent contaminant removal efficiency of 95.1 % or more even in the repeated reuse process 5 times. Overall, the eco-friendly biopolymeric nanofibrillar pH-sensitive hydrogel shows potential for complex wastewater treatment and long-term use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...